Date:

An electrical potential of one joule per coulomb is 1.

- A. one coulomb
- one ampere
- C. one ohm
- one volt

2. A unit of electrical energy is the

- A. ampere
- B. volt
- watt
- D. joule

The work required to move a charge of 3.0 coulombs through a potential difference of 12 volts is

- A. 0.25 joule
- B. 9 joules
- C. 36 joules
- D. 4.0 joules

If 20.0 joules of work is needed to move 5.0 coulombs of electrical charge through a circuit, the voltage is

- 100 volts
- 25 volts
- C. 0.25 volt
- D. 4.0 volts

If 8.0 joules of work is required to transfer 5. 4.0 coulombs of charge between two points, then the potential difference between the two points is

- 6.4 V
- B. 2.0 V
- C. 32 V
- D. 40 V

The diagram shows two parallel metal plates, 0.1 meter apart, with a potential difference between them of 10 volts. What is the electric field intensity between the plates?

- 1 N/C
- 100 N/C

- C. 0.001 N/C
- D. 0 N/C

- A proton moves through a potential difference of 1,000 volts. The change in the proton's potential energy will be
 - 1,000 eV
- 2,000 eV
- 3,000 eV
- 4,000 eV

Moving a point charge of 3.2×10^{-19} coulomb between points A and B in an electric field requires 4.8×10^{-19} joule of energy. What is the potential difference between these two points?

- A. 0.67 V
- В. $2.0\,\mathrm{V}$
- 3.0 V
- D. 1.5 V

A helium ion with +2 elementary charges is accelerated by a potential difference of 5.0×10^3 volts. What is the kinetic energy acquired by the ion?

- A. $3.2 \times 10^{-19} \text{ eV}$
- B. 2.0 eV
- C. $5.0 \times 10^3 \,\text{eV}$
- D. $1.0 \times 10^4 \,\text{eV}$

The diagram represents a negatively charged oil drop between two oppositely charged parallel plates. The forces acting on the oil drop are in equilibrium. The oil drop could have a charge of

- A. 6.4×10^{-19} C
- B. 2.0×10^{-19} C
- $1.6 \times 10^{-38} \,\mathrm{C}$
- D. 3.2×10^{-50} C

Moving 2.0 coulombs of charge a distance of 6.0 meters from point A to point B within an electric field requires a 5.0-newton force. What is the electric potential difference between points A and B?

- A. 60. V
- B. 30. V
- C. 15 V
- D. 2.5 V

12. Base your answer(s) to the following question(s) on the information and diagram below.

Two parallel plates separated by a distance of 1.0×10^{-3} meter are charged to a potential difference of 12 volts. An alpha particle with a charge of +2 elementary charges is located at point P in the region between the plates.

The electric field between the plates will cause the alpha particle, starting from rest at point P, to

- A. accelerate toward the positive plate
- B. accelerate toward the negative plate
- C. move at constant speed toward the positive plate
- D. move at constant speed toward the negative plate
- 13. An electron is located between a pair of oppositely charged parallel plates. As the electron approaches the positive plate, the kinetic energy of the electron
 - A. decreases
- B. increases
- C. remains the same
- 14. The potential difference between a pair of charged parallel plates 0.050 meter apart is 50 volts. What is the electric field intensity between the plates?
 - A. $1.0 \times 10^2 \,\text{N/C}$
- B. $2.5 \times 10^2 \,\text{N/C}$
- C. $5.0 \times 10^2 \,\text{N/C}$
- D. $1.0 \times 10^3 \,\text{N/C}$

- 15. A distance of 1.0×10^3 meters separates the charge at the bottom of a cloud and the ground. The electric field intensity between the bottom of the cloud and the ground is 2.0×10^4 newtons per coulomb. What is the potential difference between the bottom of the cloud and the ground?
 - A. $1.3 \times 10^{23} \text{ V}$
- B. $2.0 \times 10^1 \text{ V}$
- C. $2.0 \times 10^7 \text{ V}$
- D. $5.0 \times 10^{-2} \text{ V}$
- 16. Two oppositely charged parallel plates are a fixed distance apart. Which graph best represents the relationship between the electric field intensity (E) between the plates and the potential difference (V) across the plates?

- 17. If the potential difference between two oppositely charged parallel metal plates is doubled, the electric field intensity at a point between them is
 - A. halved
- B. unchanged
- C. doubled
- D. quadrupled
- 18. Base your answer(s) to the following question(s) on the information below.

A proton starts from rest and gains 8.35×10^{-14} joule of kinetic energy as it accelerates between points A and B in an electric field.

Calculate the potential difference between points A and B in the electric field. [Show all work, including the equation and substitution with units.]